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I present an improved algorithm to solve the random resistor problem using a transfer-matrix
technique. Preconditioning by spanning cluster extraction both reduces the size of the matrix and
yields faster execution times when compared to previous algorithms.

PACS number(s): 02.70.—c, 64.60.Ak, 71.30.-+h, 05.70.Jk

INTRODUCTION

The method most frequently used for solving numer-
ically the random resistor network (RRN) problem has
changed over time surprisingly often: relaxation meth-
ods for solving Kirchhoff’s equations were adopted in the
1970s, while the early 1980s were the time of the random
walk method; then the transfer-matrix (TM) approach [1]
came into fashion; and next the node-elimination method
came forth in the 1990s [2, 3]. A “Fourier acceleration”
method was also proposed in mid 1980s [4]. Renewed
interest in direct methods to solve the set of Kirchhoff
equations arose after the paper of Edwards et al. had
been published in 1988 [5]: the standard algebraic multi-
grid (AMG) method, generally used for solving large lin-
ear sparse systems, was applied. In a recent paper [6] the
standard Kirchhoff set was reduced by a Green’s function
formulation of Kirchhoff’s laws.

The random walk method is probably the worst among
the methods listed above. Although in some applications
the random walk method could be more suitable than
the others, the main reason for its frequent use appears
to be the nice exposition given in Stauffer’s famous in-
troductory book [7]. This method faces the same prob-
lem as many iterative methods for solving Kirchhoff’s
equations: its performance decreases rapidly at the crit-
ical region of a metal-insulator-like phase transition—a
so-called critical slowing down (CSD). Random walkers
diffuse anomalously slow at criticality (p = p.); hence
the diffusion constant (i.e., the conductivity) estimations
require more computer time at p = p. than for p > p..
In the same way network size scaling at criticality leads
to a faster increase of numerical efforts than the number
of resistors involved. The origin of the CSD is not so
transparent when Kirchhoff’s equations are solved itera-
tively. In that case the CSD amounts to increasing the
number of iterations needed to reach a certain precision.
Probably the CSD stems from the fractal geometry of the
resistor network. Such a geometry leads to a multifrac-
tal distribution of voltage drops [8] across the net (if an
external voltage is applied) and in this way reduces the
speed of convergence in iterative solutions.

The AMG, the transfer-matrix, and the node-
elimination methods are free of the CSD in a sense spe-
cific for each method. The speculation that the AMG
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method eliminates the critical slowing down completely
(or almost completely) relies mostly on numerical data
[5], which are far from exhaustive. The node-elimination
method calculates directly (without any voltage evalu-
ations) the network conductance by applying consecu-
tively the star-triangle transformation in a way to re-
duce the number of sites in the network until one resistor
is left. The computational effort is proportional to the
number of resistors, so it is faster at p = p. than for any
p > p.. In a similar manner the TM approach is faster
at the critical point for a given system size, but here
computations scale with size in a nontrivial way, which
will be discussed further. It is important to note that
a modification of the TM approach in order to evaluate
the voltage drop distribution is possible [9]; such modifi-
cation is impossible within the node-elimination method.

For all three methods, the “preconditioning” of the
system by extracting the connected (spanning cluster)
or biconnected (percolation backbone) component could
significantly improve the method performance. For node-
elimination and AMG approaches such an extraction
could be easily implemented.

In this paper I am concentrating on the TM approach,
presenting a modified algorithm, that allows precondi-
tioning by extraction of spanning clusters. A conceptu-
ally important feature of any TM approach is that one
does not have to consider the entire system (or its states)
at a time in order to calculate its physical properties.
Typically, one only requires information about state n in
order to proceed to state n+ 1 and subsequently discards
the information about state n. In contrast, the known
ways [5,10-12] to extract the backbone requires that the
percolation structure is kept in computer memory in its
entirety.

I present a TM algorithm that is improved in compari-
son to the previous TM formulations in two ways. It has
inherited the important feature of “voltage-source book-
keeping” from an earlier modification of the “canonical”
TM approach made by the author [13] for application to
quasicrystalline and random lattices. This feature makes
possible a better utilization of the dilute structure of the
random networks. Second, the system is preconditioned
by spanning clusters extraction. The specific method
of extraction reduces significantly the memory require-
ments, which otherwise are very restrictive.
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I. THE TRANSFER-MATRIX APPROACH

The TM approach to the numerical solution of the
RRN problem was presented first by Derrida and Vanni-
menus in 1982 [1] and has been elaborated subsequently
by several groups [15-17]. Characteristic for the TM ap-
proach in two dimensions (2D) is the use of infinitely
long strips of finite width L cut from the resistor net-
work and, analogously, in 3D the use of “bars.” The
similarity to the transfer-matrix method of the statisti-
cal mechanics of spin systems consists of the introduction
of a matrix A(M), which represents the properties (in the
RRN problem the conductivities; see below) of the semi-
infinite strip between —oo and strip slice M. As, e.g., in
[1], a strip slice of a resistor network on the square lattice
may consist of the vertical resistors in column M and the
horizontal resistors that connect columns M and M — 1.
Knowledge of the conductivity matrix A(M) and the re-
sistor configuration in slice M +1 is sufficient to calculate
A(M + 1) for the next slice. Iteration for all subsequent
slices finally obtains the conductivity of the whole strip.
In the case of a resistor network of unit resistors and
insulators, the long edges of the strip are thought of as
electrodes and the resistors in the upper and the lower
layers are taken to have zero resistance.

If the resistor network has a fractal structure, its con-
ductance tends to zero as the system size increases —
in analogy to its mass density decreasing to zero. More
quantitatively, the infinite spanning cluster at the perco-
lation threshold p. is a fractal for which finite-size scal-
ing theory shows [18] that its conductivity should scale
with the system size L as L™%/*, where v is the percola-
tion correlation-length exponent and t is the percolation
transport exponent.

The TM approach has been used first for obtaining
precise estimates of ¢ for percolation on the square and
the cubic lattices [15,17]. In Refs. [15,17] the matrix
A(M) is updated after the addition of every single re-
sistor (the program is published in [16]) instead of using
matrix equations as in [1]. Thus the calculations are sim-
plified and accelerated.

In order to define the matrix A(M), we attach voltage
sources to the open ends of the resistors at the right end
column of the growing semi-infinite strip. The matrix
A(M) is defined by attaching to the sites of the current
right end column of the semi-infinite strip voltage sources
V;, where 7 labels the row position in the strip and thus
assumes values from 1 to L, the width of the strip. Since
the voltage-current relations in the network are linear,
the current from any selected sources, say, source 7, is a
linear function of the voltages V;,

L
I; = ZAﬁ(M)W- (1)

The relation (1) defines the matrix elements A;;(M) of
the A(M). From now on I will suppress the argument M
when no confusion can arise.

When a horizontal resistor R is added to row k the
matrix. A changes to A’ with matrix elements

AirAriR
ik<41kj . (2)
1+ AR
For infinite R, a case that we encounter in insolator-
resistor mixtures, Eq. (2) simplifies to
Aip Ay
i (3)
Ak

Ay = Aij —

Aij = Aij —

When we add a vertical resistor between two adjacent
sites k and ! of a new column four matrix elements
change,

Aly=Ax —1/R,
Al =Ay —1/R, (4)
A;ck = Apr + l/R,
A=Ay +1/R.

From Eq. (1) it is clear that, in the limit M — oo,
e.g., the difference A(M)rr — A(0)Lr tends to the trans-
verse conductance of the strip of width L. From an anal-
ysis of the conductivity scaling of strips with different L
one obtains the conductivity scaling exponent. For the
percolation cluster at p., this exponent equals the ratio
t/v.

The advantages of the TM approach have been de-
scribed in the pioneering works [1] and [16]. Here, I would
like to point out to the reader its main drawback: the size
of the matrix A and the computational effort grow very
fast with the strip width L.

In particular, the size of the matrix grows as L% and L*
for 2D and 3D, respectively. If we consider a site percola-
tion model in 2D, then the addition of every new column
leads to adding an average of p?(L — 1) horizontal and
p3(L — 2) + 2p vertical resistors. Taking the size of the
matrix A into account, we find that Eq. (2) is applied
proportionally o L3 times whereas only operations pro-
portional to L are required for Egs. (4). Thus it is clear
that for widths larger than 10 — 15 lattice spacings more
than 90% of the time is spent on calculating the relations
(2). In 3D the situation is even worse: the upper bound
for the computational efforts scales as L5. But, in fact,
this bound is overestimated: Ref. [16] points out that the
computational effort scales as L* due to the fact that the
matrix A is sparse, i.e., most of its elements equal zero.
In the next section, I will describe a modification of the
TM approach that overcomes these problems in part.

II. MODIFIED ALGORITHM

The site-percolation case will be considered without
loss of generality. The voltage-source bookkeeping pro-
cedure is described in Sec. IT A. Second (Sec. II B) comes
the method for extracting the spanning clusters and fi-
nally (Sec. IIIC) I present the main steps in the complete
algorithm.

A. Conductivity calculations
Let us reconsider Eq. (1) in the case of a general re-

sistor network. Let some network nodes of an arbitrary
resistor network be connected to external voltage sources
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Vi. Then I; [Eq. (1)] is the current from source j and
the absolute values of the off-diagonal elements of matrix
A;j,i # j, represent the conductances between voltage
sources ¢ and j. The diagonal elements give the conduc-
tance between the respective source and the “ground” —
the other sources set to zero voltage. In fact, we can like-
wise interpret the matrix elements A;; introduced in Eq.
(1) in Sec. I. The difference is that the number of sources
in the present case does not strictly depend on the strip
width and their connection to the right-hand end is not
mandatory (see Fig. 1 in Ref. [13]). Equations (2)—(4)
still apply in the present general case if we allow in the
general geometry the “addition of a vertical resistor” as
the connection with a resistor of two sites with voltage
sources attached to them and the “addition of a horizon-
tal resistor” as the insertion of a resistor between a site
and the voltage source previously attached to this site.
In other words, adding a horizontal resistor creates a new
site and moves the voltage source to it.

Based on these general concepts, we may formulate as
algorithm the conductivity calculations Egs. (2)—(4) for
the resistor strip case and the construction of the strip.
The algorithm has three main steps.

(i) Add a new site to the right-hand end of the already
existing strip and attach a voltage source to this site.

(ii) Find the neighbors of this site among the sites al-
ready present and connect them with resistors. Update
the matrix using Eq. (4). The algorithm should en-
sure that the neighbors have their own voltage sources
attached.

(iii) If a site with its attached voltage source is lo-
cated within the bulk of the growing strip then detach
the source to free it for subsequent attachment to a new
site on the growing edge of the strip. To this end, we (a)
insert an insulating “resistor” between the network site
and the previously attached source. Then we (b) update
the TM according to Eq. (3). The information about the
voltage source index is kept on a stack, ready to be (c)
used again when a new site is added to the right-hand
end of the strip. We have done nothing more than add
a bridge of infinite resistance between two points of the
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FIG. 1. Comparison between the performance with and
without extracting spanning clusters. (Time units are Sun
SPARC 10 computer workstation CPU seconds.) z”(...) is
the power law fitted to the respective data set.
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network, which does not alter its conductivity properties,
and move a voltage source.

Since a regular lattice structure of the resistor bonds
is not a prerequisite for the conductivity calculation out-
lined above, an algorithm based on steps (i)—(iii) is useful
for calculation of percolative conductivities of quasicrys-
talline and random lattices [13, 14].

Since we have to only update the TM for lattice sites
that are actually connected to the strip by resistors of
finite resistance and since we always apply the simpler
Eq. (3) instead of Eq. (2), the outlined procedure is
already faster than the standard algorithm [16].

The matrix size, i.e., the number of matrix elements,
instead of being L? is only approximately equal to p?L?
for the square lattice and approximately equal to p?L*
instead of L* for the cubic lattice. The scaling with L of
the matrix size is not altered, but the way of handling the
voltage source numbers allows for a significantly smaller
prefactor and (more important) it facilitates the system
preconditioning, which does lead to an improvement of
memory and performance scaling.

B. Spanning cluster extraction

We achieve an improvement of the scaling of the ma-
trix size as a function of L by the extraction of spanning
clusters. The spanning clusters are defined as the per-
colating clusters that connect the top and the bottom
edges of the strip or, respectively, the bottom and the
top faces of the bar in 3D. At p. the spanning clusters in
strip geometries represent the incipient infinite percola-
tion cluster. Its fractal dimension dy is 91/48 in 2D and
around 2.5 in 3D [7]. If only voltage sources connected
to the spanning clusters contribute to the matrix size,
then this size should scale as L2(47~1) where the expo-
nent dy — 1 reflects the system width dependence of the
scaling of the spanning cluster’s sites found in a (d — 1)-
dimensional cut [19]. Thus, in 2D the matrix size scales
as L7 instead of L2. In 3D the number of the matrix
elements is proportional to L3 rather than L.

How does one extract the spanning clusters in strip ge-
ometries? Several general algorithms exist to solve this
problem [10-12]. However, they all require that the per-
colation structure has been created beforehand and is
stored in its entirety leading to large computer memory
requirements (e.g., for a bar 10° x 100 x 100 one has to
consider 10° sites and 10® matrix elements).

I now present an algorithm that partly resolves this
problem, which would otherwise limit the strip length.
The method for extracting the spanning cluster is based
on the Hoshen-Kopelman algorithm [20, 7] for cluster
counting. As is well known, this algorithm requires only
consecutive (d — 1)-dimensional cuts of the lattice to be
kept during its lattice “sweeping.” Cluster information
is stored in one one-dimensional array — the array of
cluster sizes and pointers, sometimes denoted as the ar-
ray of “labels of labels” (LOL) [7]. The index into this
array represents the cluster labels and its elements are
either “cluster roots” — then containing the size of a
specific cluster — or pointers to these cluster roots —
i.e., negative numbers whose absolute value is equal to
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the index of the array element corresponding to the clus-
ter root. Moreover, the cluster root element may be used
to store other information about its cluster, e.g., whether
the cluster touches the upper and/or the lower layer of
the strip.

Running the Hoshen-Kopelman algorithm requires
that the percolation structure be scanned twice in or-
der to extract the spanning clusters. These two runs are
required because if we reach a site during the first run we
cannot decide whether this site’s cluster will eventually
turn out to span. To avoid storage of the entire cluster in
memory, we perform the second sweep based on a repeti-
tion of the pseudorandom number sequence that created
the first sweep cluster. During the second sweep the LOL
array is examined to decide which cluster a site belongs
to and whether this cluster spans. Only sites belonging
to spanning clusters enter the conductivity calculations.

Thus, instead of storing the percolation cluster struc-
ture itself, we only store the LOL array. The key ques-
tion for the proposed algorithm is the size of the LOL
array that has to be retained in memory between the
two Hoshen-Kopelman sweeps. To keep its size small I
apply a procedure to recycle unused labels [21, 22]. The
size of the resulting LOL arrays turns out to be less than
0.5% of the memory required to retain the whole cluster
structure in memory.

C. The complete algorithm

The full algorithm, including both the spanning clus-
ters extraction and the conductivity-calculation proce-
dures, may be summarized as follows.

(i) Scan the random structure with the Hoshen-
Kopelman procedure constructing the LOL array by a
label recycling technique. After the sweep, keep the LOL
array in memory.

(ii) Repeat the scan using the same pseudorandom
number sequence. After creation of a new site, decide by
comparing the new and the stored LOL array whether
this site belongs to a spanning cluster. If it does then
the site enters the TM conductivity calculations. These
proceed according to step (i)—(iii) as Sec. IT A.

(iii) When the second scan terminates calculate the
transverse conductance per unit length as

_ AM)rL — A(Mo)rL

EL - M — MO ) (5)

where I have used My = M/5 to reduce boundary effects.

III. PERFORMANCE SCALING RESULTS

I have developed the algorithm described in the pre-
ceding section in conjunction with a study [23] on the
conductivity of several distinct percolation models and it
has not only been applied to standard percolation.

I compare the TM algorithm proposed in this paper
(the modified algorithm) to the previously published [16,
13] TM algorithms (the standard algorithms). As a stan-
dard algorithm I used mostly the algorithm proposed in
[13] which was described in Sec IT A. The code published
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in [16] was run with a technical improvement (zero ele-
ments check in the most-inner loop) only to be seen that
the performance scaling is the same for both “standards.”
It is worth to note that the performance scaling ~ L% in
3D, reported in [16], is an overestimation probably due
to that technical item.

In Fig. 1 I display the amount of computer time re-
quired for the conductivity calculations by the modified
and the standard algorithm on two different percolation
models, namely, ordinary site percolation and one-step
bootstrap percolation [23]. In the bootstrap percolation
model [24] one generates a site configuration in several
steps. First, one randomly occupies a specific small frac-
tion of the lattice sites. Subsequently, one determines all
empty lattice sites with at least two occupied neighbors
and occupies these empty sites as well. The steps are
repeated until no empty sites with two occupied neigh-
bors remain. If such procedure stops after its first step I
call it one-step bootstrap percolation. The percolation-
transport and correlation-length exponents of the one-
step bootstrap percolation model almost equal those of
ordinary site percolation [23]. The computer time for
these two models, when running the standard algorithm
in 3D, is scaled in the same way—even with the same
prefactor—so the averaged results are given on one curve
(3D) in Fig. 1. This coincidence encouraged using the
data available [23] in 2D for the comparison in the next
paragraph. (In 2D the two algorithms were applied to dif-
ferent models: the standard algorithm to the bootstrap
model and the modified to ordinary percolation.)

As expected from the arguments in Sec. II, the mod-
ified algorithm displays the better scaling properties
throughout. In three-dimensional site percolation the
computer time scales as ~ L324 for the standard algo-
rithm, whereas the modification needs time proportional
to L%40 only. Similarly, in 2D we observe that the stan-
dard requires time approximately L2°%, whereas approx-
imately L% suffices for the modification. One can see
that these values are appreciably smaller than the respec-
tive upper bonds given in Sec. I.

The errors in the above values, given by the least-
squares fitting procedure, were smaller than the un-
certainty coming from the eventual correction-to-scaling
terms. A more careful analysis is needed, but a rea-
sonable value for the error should be within 0.1-0.2.
All the tests were made at the percolation threshold
for the respective model. The strip (bar) length was of
the order 10® in two dimensions and 10° in 3D. Several
strips were calculated for each width and model. If one
has to compare with statistics accumulated by means
of another method on square (cubic) samples, a strip
108 x 100 may correspond to several hundred runs on, say,
a1004/2x100+/2 sample. [In Ref.[25] it was found numer-
ically that at p. the average length of the spanning clus-
ters is around 2.0L and their number is = (3/8)(M/L),
where M is the strip length.]

The modified model was applied as well in studying
properties of some “percolation-generated” fractals. Af-
ter the extraction of spanning clusters at the percolation
thresholds one adds new sites on the cluster perimeter in
order for some aerogel structures to be modeled [26, 27].
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FIG. 2. Performance scaling for modified percolation
models where, after extraction of spanning clusters, additional
loops were closed (I) by addition of new sites on the cluster
perimeter (II) by adding sites as in (I) but with a lower den-
sity, and (III) by increasing the connectivity range to second
neighbors. (Time units are Sun SPARC 10 workstation CPU
seconds.)

In Fig. 2 T display timing results for such fractals (cf.
[23]). The data sets (I) and (II) correspond to two en-
sembles with a higher (I) and a lower (II) fraction of ad-
ditionally occupied perimeter sites of the spanning clus-
ters. The set (III) has been taken for a model in which
one considers second nearest neighbors in the spanning
clusters as connected. As can be seen, depending on the
model, the computer time scaling may vary significantly.

duces significantly the computational efforts required for
obtaining the conductivity scaling for fractal structures
in 2D and especially in 3D. In contrast to the L32 com-
puter time requirements of conventional TM algorithms
in 3D, the time requirements of the algorithm proposed
in this work scales approximately as L?* for percola-
tion clusters at p.. Extracting the percolation cluster
backbone instead of spanning clusters only would ensure
further improvement of the performance.

Probably the main disadvantage of the modification of
the TM approach described here is the complexity of the
algorithm. Therefore, I have made the program publicly
available [22].
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